Neuronal variability during handwriting: Lognormal distribution

Valery I. Rupasov, Mikhail A. Lebedev, Joseph S. Erlichman, Michael Linderman

Research output: Contribution to journalArticlepeer-review

9 Citations (Scopus)

Abstract

We examined time-dependent statistical properties of electromyographic (EMG) signals recorded from intrinsic hand muscles during handwriting. Our analysis showed that trial-to-trial neuronal variability of EMG signals is well described by the lognormal distribution clearly distinguished from the Gaussian (normal) distribution. This finding indicates that EMG formation cannot be described by a conventional model where the signal is normally distributed because it is composed by summation of many random sources. We found that the variability of temporal parameters of handwriting - handwriting duration and response time - is also well described by a lognormal distribution. Although, the exact mechanism of lognormal statistics remains an open question, the results obtained should significantly impact experimental research, theoretical modeling and bioengineering applications of motor networks. In particular, our results suggest that accounting for lognormal distribution of EMGs can improve biomimetic systems that strive to reproduce EMG signals in artificial actuators.

Original languageEnglish
Article numbere34759
JournalPLoS ONE
Volume7
Issue number4
DOIs
Publication statusPublished - 13 Apr 2012
Externally publishedYes

Fingerprint

Dive into the research topics of 'Neuronal variability during handwriting: Lognormal distribution'. Together they form a unique fingerprint.

Cite this