Natural and artificial mechanisms of mitochondrial genome elimination

Elvira G. Zakirova, Vladimir V. Muzyka, Ilya O. Mazunin, Konstantin E. Orishchenko

Research output: Contribution to journalReview articlepeer-review

2 Citations (Scopus)


The generally accepted theory of the genetic drift of mitochondrial alleles during mammalian ontogenesis is based on the presence of a selective bottleneck in the female germline. However, there is a variety of different theories on the pathways of genetic regulation of mitochondrial DNA (mtDNA) dynamics in oogenesis and adult somatic cells. The current review summarizes present knowledge on the natural mechanisms of mitochondrial genome elimination during mammalian development. We also discuss the variety of existing and developing methodologies for artificial manipulation of the mtDNA heteroplasmy level. Understanding of the basics of mtDNA dynamics will shed the light on the pathogenesis and potential therapies of human diseases associated with mitochondrial dysfunction.

Original languageEnglish
Article number76
Pages (from-to)1-22
Number of pages22
Issue number2
Publication statusPublished - Feb 2021


  • Heteroplasmy
  • Mitochondrial DNA segregation
  • Mitochondrial engineered nucleases
  • Mitophagy
  • Selective elimination


Dive into the research topics of 'Natural and artificial mechanisms of mitochondrial genome elimination'. Together they form a unique fingerprint.

Cite this