Nano-scale residual stress profiling in thin multilayer films with non-equibiaxial stress state

Marco Sebastiani, Edoardo Rossi, Muhammad Zeeshan Mughal, Alessandro Benedetto, Paul Jacquet, Enrico Salvati, Alexander M. Korsunsky

Research output: Contribution to journalArticlepeer-review

10 Citations (Scopus)

Abstract

Silver-based low-emissivity (low-E) coatings are applied on architectural glazing to cost-effectively reduce heat losses, as they generally consist of dielectric/Ag/dielectric multilayer stacks, where the thin Ag layer reflects long wavelength infrared (IR), while the dielectric layers both protect the Ag and act as an anti-reflective barrier. The architecture of the multilayer stack influences its mechanical properties and it is strongly dependent on the residual stress distribution in the stack. Residual stress evaluation by combining focused ion beam (FIB) milling and digital image correlation (DIC), using the micro-ring core configuration (FIB-DIC), offers micron-scale lateral resolution and provides information about the residual stress variation with depth, i.e., it allows depth profiling for both equibiaxial and non-equibiaxial stress distributions and hence can be effectively used to characterize low-E coatings. In this work, we propose an innovative approach to improve the depth resolution and surface sensitivity for residual stress depth profiling in the case of ultra-thin as-deposited and post-deposition annealed Si3N4/Ag/ZnO low-E coatings, by considering different fractions of area for DIC strain analysis and accordingly developing a unique influence function to maintain the sensitivity of the technique at is maximum during the calculation. Residual stress measurements performed using this novel FIB-DIC approach revealed that the individual Si3N4/ZnO layers in the multilayer stack are under different amounts of compressive stresses. The magnitude and orientation of these stresses changes significantly after heat treatment and provides a clear explanation for the observed differences in terms of scratch critical load. The results show that the proposed FIB-DIC combined-areas approach is a unique method for accurately probing non-equibiaxial residual stresses with nano-scale resolution in thin films, including multilayers.

Original languageEnglish
Article number853
JournalNanomaterials
Volume10
Issue number5
DOIs
Publication statusPublished - May 2020
Externally publishedYes

Keywords

  • Adhesion
  • FIB-DIC
  • Low emissivity coatings
  • Non-equibiaxial stress
  • Profiling
  • Residual stress
  • Ring-core

Fingerprint

Dive into the research topics of 'Nano-scale residual stress profiling in thin multilayer films with non-equibiaxial stress state'. Together they form a unique fingerprint.

Cite this