Model for shock wave chaos

Aslan R. Kasimov, Luiz M. Faria, Rodolfo R. Rosales

Research output: Contribution to journalArticlepeer-review

21 Citations (Scopus)

Abstract

We propose the following model equation, ut+1/2(u2-uu s)x=f(x,us) that predicts chaotic shock waves, similar to those in detonations in chemically reacting mixtures. The equation is given on the half line, x<0, and the shock is located at x=0 for any t≥0. Here, us(t) is the shock state and the source term f is taken to mimic the chemical energy release in detonations. This equation retains the essential physics needed to reproduce many properties of detonations in gaseous reactive mixtures: steady traveling wave solutions, instability of such solutions, and the onset of chaos. Our model is the first (to our knowledge) to describe chaos in shock waves by a scalar first-order partial differential equation. The chaos arises in the equation thanks to an interplay between the nonlinearity of the inviscid Burgers equation and a novel forcing term that is nonlocal in nature and has deep physical roots in reactive Euler equations.

Original languageEnglish
Article number104104
JournalPhysical Review Letters
Volume110
Issue number10
DOIs
Publication statusPublished - 8 Mar 2013
Externally publishedYes

Fingerprint

Dive into the research topics of 'Model for shock wave chaos'. Together they form a unique fingerprint.

Cite this