Matrix-Form Neural Networks for Complex-Variable Basis Pursuit Problem With Application to Sparse Signal Reconstruction

Songchuan Zhang, Yonghui Xia, Youshen Xia, Jun Wang

Research output: Contribution to journalArticlepeer-review

4 Citations (Scopus)

Abstract

In this article, a continuous-time complex-valued projection neural network (CCPNN) in a matrix state space is first proposed for a general complex-variable basis pursuit problem. The proposed CCPNN is proved to be stable in the sense of Lyapunov and to be globally convergent to the optimal solution under the condition that the sensing matrix is not row full rank. Furthermore, an improved discrete-time complex projection neural network (IDCPNN) is proposed by discretizing the CCPNN model. The proposed IDCPNN consists of a two-step stop strategy to reduce the calculational cost. The proposed IDCPNN is theoretically guaranteed to be global convergent to the optimal solution. Finally, the proposed IDCPNN is applied to the reconstruction of sparse signals based on compressed sensing. Computed results show that the proposed IDCPNN is superior to related complex-valued neural networks and conventional basis pursuit algorithms in terms of solution quality and computation time.

Original languageEnglish
JournalIEEE Transactions on Cybernetics
DOIs
Publication statusPublished - 2021
Externally publishedYes

Keywords

  • Basis pursuit problem
  • complex state variable
  • matrix-form neural network
  • stability and global convergence

Fingerprint

Dive into the research topics of 'Matrix-Form Neural Networks for Complex-Variable Basis Pursuit Problem With Application to Sparse Signal Reconstruction'. Together they form a unique fingerprint.

Cite this