Magnetic Hyperthermia Nanoarchitectonics via Iron Oxide Nanoparticles Stabilised by Oleic Acid: Anti-Tumour Efficiency and Safety Evaluation in Animals with Transplanted Carcinoma

Oleg A. Kulikov, Mikhail N. Zharkov, Valentin P. Ageev, Denis E. Yakobson, Vasilisa I. Shlyapkina, Andrey V. Zaborovskiy, Vera I. Inchina, Larisa A. Balykova, Alexander M. Tishin, Gleb B. Sukhorukov, Nikolay A. Pyataev

Research output: Contribution to journalArticlepeer-review

4 Citations (Scopus)

Abstract

In this study, we developed iron oxide nanoparticles stabilised with oleic acid/sodium oleate that could exert therapeutic effects for curing tumours via magnetic hyperthermia. A suspension of iron oxide nanoparticles was produced and characterised. The toxicity of the synthesised composition was examined in vivo and found to be negligible. Histological examination showed a low local irritant effect and no effect on the morphology of the internal organs. The efficiency of magnetic hyperthermia for the treatment of transplanted Walker 256 carcinoma was evaluated. The tumour was infiltrated with the synthesised particles and then treated with an alternating magnetic field. The survival rate was 85% in the studied therapy group of seven animals, while in the control group (without treatment), all animals died. The physicochemical and pharmaceutical properties of the synthesised fluid and the therapeutic results, as seen in the in vivo experiments, provide insights into therapeutic hyperthermia using injected magnetite nanoparticles.

Original languageEnglish
Article number4234
JournalInternational Journal of Molecular Sciences
Volume23
Issue number8
DOIs
Publication statusPublished - 1 Apr 2022

Keywords

  • anti-tumour activity
  • iron oxide nanoparticles
  • magnetic hyperthermia
  • oleic acid
  • toxicity
  • W256 carcinoma

Fingerprint

Dive into the research topics of 'Magnetic Hyperthermia Nanoarchitectonics via Iron Oxide Nanoparticles Stabilised by Oleic Acid: Anti-Tumour Efficiency and Safety Evaluation in Animals with Transplanted Carcinoma'. Together they form a unique fingerprint.

Cite this