Kinetics of stimulated polariton scattering in planar microcavities: Evidence for a dynamically self-organized optical parametric oscillator

A. A. Demenev, A. A. Shchekin, A. V. Larionov, S. S. Gavrilov, V. D. Kulakovskii, N. A. Gippius, S. G. Tikhodeev

Research output: Contribution to journalArticlepeer-review

33 Citations (Scopus)

Abstract

Strong temporal hysteresis effects in the population kinetics of pumped and scattered lower polaritons (LPs) have been observed in a planar semiconductor microcavity under a nanosecond-long pulsed resonant excitation (by frequency and angle) near the inflection point of the LPs' dispersion. The hysteresis loops have a complicated shape due to the interplay of two instabilities. The self-instability (bistability) of the nonlinear pumped LP is accompanied by a strong parametric instability which causes an explosive growth of the scattered LPs' population over a wide range of wave vectors. Finally, after a 30-500ps period, a three-mode scattering pattern forms, thereby demonstrating a dynamically self-organized regime of the optical parametric oscillator. Stability is maintained by the presence of numerous weak "above- condensate" modes; the whole system therefore appears to be highly correlated.

Original languageEnglish
Article number136401
JournalPhysical Review Letters
Volume101
Issue number13
DOIs
Publication statusPublished - 22 Sep 2008
Externally publishedYes

Fingerprint

Dive into the research topics of 'Kinetics of stimulated polariton scattering in planar microcavities: Evidence for a dynamically self-organized optical parametric oscillator'. Together they form a unique fingerprint.

Cite this