Interaction of 23S ribosomal RNA helices 89 and 91 of Escherichia coli contributes to the activity of IF2 but is insignificant for elongation factors functioning

D. E. Burakovskiǐ, A. S. Smirnova, D. V. Lesniak, S. V. Kiparisov, A. A. Leonov, P. V. Sergiev, A. A. Bogdanov, O. A. Dontsova

Research output: Contribution to journalArticlepeer-review

4 Citations (Scopus)

Abstract

The non-canonical base-pair C2475/G2529 joins helices 89 and 91 of the 23S rRNA in the large subunit of E. coli ribosomes. These nucleotides are located at the "crossroads" between the peptidyl transferase center, the sarcin-ricin loop and the GTPase-associated center. We probed the functional role of nucleotides C2475/G2529 by the mutations C2475G, C2475G/G2529C and deltaA2471/U2479 of 23S rRNA. All these mutations had no influence on the elongation factors activity but had different effects on the cell growth, 23S rRNA conformation and translation initiation. C2475G/G2529C and C2475G mutations led to more or less substantial decrease in IF2.GDPNP binding to the ribosomes, and IF2-assisted initiation complex formation. Ribosome-dependent GTPase activity of IF2 was enhanced by both C2475G/G2529C and C2475G mutations. Mutation deltaA2471/U2479 has no influence on IF2.GDPNP binding to the ribosome, but reduces IF2-dependent formation of initiation complex and the ribosome-dependent GTPase activity. Thus, the contact between helices 89 and 91 is important for efficient IF2 functioning in translation initiation.

Original languageEnglish
Pages (from-to)1031-1041
Number of pages11
JournalMolekulyarnaya Biologiya
Volume41
Issue number6
Publication statusPublished - Nov 2007
Externally publishedYes

Fingerprint

Dive into the research topics of 'Interaction of 23S ribosomal RNA helices 89 and 91 of Escherichia coli contributes to the activity of IF2 but is insignificant for elongation factors functioning'. Together they form a unique fingerprint.

Cite this