Independent control of ion transmission in a jet disrupter dual-channel ion funnel electrospray ionization MS interface

Keqi Tang, Aleksey V. Tolmachev, Evgueni Nikolaev, Rui Zhang, Mikhail E. Belov, Harold R. Udseth, Richard D. Smith

Research output: Contribution to journalArticlepeer-review

59 Citations (Scopus)

Abstract

A new atmospheric pressure ionization mass spectrometer (API-MS) interface has been developed to allow the control of ion transmission through the first vacuum stage of the mass spectrometer. The described interface uses a dual-heated capillary and a dual-inlet ion funnel design. Two electrosprays, aligned with the dual-capillary inlet, are used to introduce ions from different solutions independently into the MS. The initial design was specifically aimed at developing a method for the controlled introduction of calibrant ions in highly accurate mass measurements using Fourier transform ion cyclotron resonance mass spectrometer (FTICR). The dual-channel ion funnel has different inlet diameters that are aligned with the dual capillaries. The large diameter main channel of the ion funnel is used for analyte introduction to provide optimum ion transmission. The second, smaller diameter channel inlet includes a jet disrupter in the ion funnel to modulate the ion transmission through the channel. The two inlet channels converge into a single-channel ion funnel where ions from both channels are mixed, focused, and transmitted to the mass analyzer. Both theoretical simulations and experimental results show that the transmission of different m/z species in the small diameter channel of the ion funnel can be effectively modulated by varying the bias voltage on the jet disrupter. Both static and dynamic modulations of ion transmission are demonstrated experimentally by applying either a constant DC or a square waveform voltage to the jet disrupter. High ion transmission efficiency, similar to the standard single-channel ion funnel, is maintained in the main analyte channel inlet of the ion funnel over a broad m/z range with negligible "cross talk" between the two ion funnel inlet channels. Several possible applications of the new interface (e.g., for high-accuracy MS analysis of complex biological samples) are described.

Original languageEnglish
Pages (from-to)5431-5437
Number of pages7
JournalAnalytical Chemistry
Volume74
Issue number20
DOIs
Publication statusPublished - 15 Oct 2002
Externally publishedYes

Fingerprint

Dive into the research topics of 'Independent control of ion transmission in a jet disrupter dual-channel ion funnel electrospray ionization MS interface'. Together they form a unique fingerprint.

Cite this