High-speed aerosol flow through micro-nozzles for direct-write processes

Justin M. Hoey, Sourin Bhattacharya, Artur Lutfurakhmanov, Michael Robinson, Orven F. Swenson, Iskander S. Akhatov

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

1 Citation (Scopus)

Abstract

Aerosol direct-write printing for mesoscale features has been commercially available since around 2002 from Optomec®. We have developed variances to this process first in Collimated Aerosol Beam- Direct Write (CAB-DW) for printing sub-10 μm features and in Micro Cold Spray for printing with solid metallic aerosols. These deposition tools offer extensive uses, but are still limited in certain applications by either line widths or the amount of overspray. Modeling of aerosol flow through micro-nozzles used in these applications yields a greater understanding of the focusing of these aerosol particles, and may provide a vehicle for new nozzle designs which will further enhance these tools. Recent modeling applied both Stokes and Saffman force to the aerosol particles. Under certain conditions particle rotation and Magnus force may also be necessary to accurately predict the aerosol particles. In this paper we will present our recent results of high-speed flow of 1 - 10 μm diameter aerosol particles through micro-nozzles in which the model includes all three forces (Stokes, Saffman, Magnus) of fluid-particle interaction, and a comparison of these results to experiments.

Original languageEnglish
Title of host publicationMicro- and Nano-Systems Engineering and Packaging
PublisherAmerican Society of Mechanical Engineers (ASME)
ISBN (Print)9780791856390
DOIs
Publication statusPublished - 2013
Externally publishedYes
EventASME 2013 International Mechanical Engineering Congress and Exposition, IMECE 2013 - San Diego, CA, United States
Duration: 15 Nov 201321 Nov 2013

Publication series

NameASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE)
Volume10

Conference

ConferenceASME 2013 International Mechanical Engineering Congress and Exposition, IMECE 2013
Country/TerritoryUnited States
CitySan Diego, CA
Period15/11/1321/11/13

Fingerprint

Dive into the research topics of 'High-speed aerosol flow through micro-nozzles for direct-write processes'. Together they form a unique fingerprint.

Cite this