Electric-field-driven magnetic domain wall as a microscale magneto-optical shutter

Nikolai E. Khokhlov, Anastasiya E. Khramova, Elena P. Nikolaeva, Tatyana B. Kosykh, Alexey V. Nikolaev, Anatoly K. Zvezdin, Alexander P. Pyatakov, Vladimir I. Belotelov

Research output: Contribution to journalArticlepeer-review

11 Citations (Scopus)

Abstract

Nowadays, spintronics considers magnetic domain walls as a kind of nanodevi?e that demands for switching much less energy in comparison to homogeneous process. We propose and demonstrate a new concept for the light control via electric field applied locally to a magnetic domain wall playing the role of nanodevice. In detail, we charged a 15-μm-thick metallic tip to generate strong non-uniform electric field in the vicinity of the domain wall in the iron garnet film. The electric field influences the domain wall due to flexomagnetoelectric effect and causes the domain wall shift. The resulting displacement of the domain wall is up to 1/3 of domain width and allows to demonstrate a novel type of the electrically controlled magneto-optical shutter. Polarized laser beam focused on the electricfield- driven domain wall was used to demonstrate the concept of a microscale Faraday modulator. We obtained different regimes of the light modulation - linear, nonlinear and tri-stable - for the same domain wall with corresponding controllable displacement features. Such variability to control of domain wall's displacement with spatial scale of about 10 μm makes the proposed concept very promising for nanophotonics and spintronics.

Original languageEnglish
Article number264
JournalScientific Reports
Volume7
Issue number1
DOIs
Publication statusPublished - 2017
Externally publishedYes

Fingerprint

Dive into the research topics of 'Electric-field-driven magnetic domain wall as a microscale magneto-optical shutter'. Together they form a unique fingerprint.

Cite this