Effectiveness of classical spin simulations for describing NMR relaxation of quantum spins

Tarek A. Elsayed, Boris V. Fine

Research output: Contribution to journalArticlepeer-review

12 Citations (Scopus)


We investigate the limits of effectiveness of classical spin simulations for predicting free induction decays (FIDs) measured by solid-state nuclear magnetic resonance on systems of quantum nuclear spins. The specific limits considered are associated with the range of interaction, the size of individual quantum spins, and the long-time behavior of the FID signals. We compare FIDs measured or computed for lattices of quantum spins (mainly spins 1/2) with the FIDs computed for the corresponding lattices of classical spins. Several cases of excellent quantitative agreement between quantum and classical FIDs are reported along with the cases of gradually decreasing quality of the agreement. We formulate semiempirical criteria defining the situations, when classical simulations are expected to accurately reproduce quantum FIDs. Our findings indicate that classical simulations may be a quantitatively accurate tool of first-principles calculations for a broad class of macroscopic systems, where individual quantum microscopic degrees of freedom are far from the classical limit.

Original languageEnglish
Article number094424
JournalPhysical Review B - Condensed Matter and Materials Physics
Issue number9
Publication statusPublished - 24 Mar 2015


Dive into the research topics of 'Effectiveness of classical spin simulations for describing NMR relaxation of quantum spins'. Together they form a unique fingerprint.

Cite this