Dynamic analysis of a bladed disk with friction and fretting-wear in blade attachments

Loïc Salles, Laurent Blanc, Fabrice Thouverez, Aleksander M. Gouskov, Pierrick Jean

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

30 Citations (Scopus)

Abstract

Assembled bladed disks have many contact interfaces (blade-disk joint, blade shrouds, friction dampers...). Because of relative displacements at these interfaces, fretting-wear occurs, which affects negatively the lifetime of the structure. Methods exist to predict fretting-wear in quasi-static analysis. However they don't predict all the phenomena observed in blade attachments on real industrial plants. This paper studies the assumption of a responsibility of dynamics for fretting-wear damage. A numerical treatment of fretting-wear under vibratory loading is proposed. The method is based on the Dynamical Lagrangian Frequency Time method. It models unilateral contact through Coulomb's friction law. The basic idea is to separate time in two scales, slow scale for tribological phenomena and fast scale for dynamics. For a chosen number of periods of vibration, a steady state is assumed and the variables are decomposed in Fourier series. An Alternating Frequency Time procedure is performed to calculate the non-linear forces. Then, a Hybrid Powell's algorithm is used as solver. A quasi-analytical expression of the Jacobian matrix decreases the duration of calculations. This expression is also used to predict new relative displacement at the interfaces due to the increase of wear depth. This method is similar to a prediction-correction method, with wear depth as the term of continuation. Numerical investigations on a bladed-disk with friction contact interfaces illustrate the performances of this method and show the coupling between dynamical and tribological phenomena.

Original languageEnglish
Title of host publicationProceedings of the ASME Turbo Expo 2009
Subtitle of host publicationPower for Land, Sea and Air
Pages465-476
Number of pages12
EditionPART A
DOIs
Publication statusPublished - 2009
Externally publishedYes
Event2009 ASME Turbo Expo - Orlando, FL, United States
Duration: 8 Jun 200912 Jun 2009

Publication series

NameProceedings of the ASME Turbo Expo
NumberPART A
Volume6

Conference

Conference2009 ASME Turbo Expo
Country/TerritoryUnited States
CityOrlando, FL
Period8/06/0912/06/09

Fingerprint

Dive into the research topics of 'Dynamic analysis of a bladed disk with friction and fretting-wear in blade attachments'. Together they form a unique fingerprint.

Cite this