Dispersionless DKP hierarchy and the elliptic Lowner equation

V. Akhmedova, A. Zabrodin

Research output: Contribution to journalArticlepeer-review

4 Citations (Scopus)

Abstract

We show that the dispersionless DKP hierarchy (the dispersionless limit of the Pfaff lattice) admits a suggestive reformulation through elliptic functions. We also consider one-variable reductions of the dispersionless DKP hierarchy and show that they are described by an elliptic version of the Löwner equation. With a particular choice of the driving function, the latter appears to be closely related to the Painlevá VI equation with a special choice of parameters.

Original languageEnglish
Article number392001
JournalJournal of Physics A: Mathematical and Theoretical
Volume47
Issue number39
DOIs
Publication statusPublished - 3 Oct 2014
Externally publishedYes

Keywords

  • elliptic functions
  • integrable hierarchies
  • Löwner equation

Fingerprint

Dive into the research topics of 'Dispersionless DKP hierarchy and the elliptic Lowner equation'. Together they form a unique fingerprint.

Cite this