DeepXPalm: Tilt and Position Rendering using Palm-worn Haptic Display and CNN-based Tactile Pattern Recognition

Miguel Altamirano Cabrera, Oleg Sautenkov, Jonathan Tirado, Aleksey Fedoseev, Pavel Kopanev, Hiroyuki Kajimoto, Dzmitry Tsetserukou

    Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review


    Telemanipulation of deformable objects requires high precision and dexterity from the users, which can be increased by kinesthetic and tactile feedback. However, the object shape can change dynamically, causing ambiguous perception of its alignment and hence errors in the robot positioning. Therefore, recognize the tilt angle and position patterns sensed over the gripper fingertip is a classification problem that has to be solved to present a clear tactile pattern to the user. This work presents a telemanipulation system for plastic pipettes consisting of a multi-contact haptic interface LinkGlide to deliver haptic feedback at the users' palm and two tactile sensors array embedded in the 2-finger Robotiq gripper. We propose a novel approach based on Convolutional Neural Networks (CNN) to detect the tilt and position while grasping deformable objects. The CNN generates a mask based on recognized tilt and position data to render further multi-contact tactile stimuli provided to the user during the telemanipulation. The study has shown that using the CNN algorithm and the preset mask, tilt, and position recognition by users is increased from 9.67% using the direct data to 82.5%.

    Original languageEnglish
    Title of host publication2022 IEEE Haptics Symposium, HAPTICS 2022
    PublisherIEEE Computer Society
    ISBN (Electronic)9781665420297
    Publication statusPublished - 2022
    Event27th IEEE Haptics Symposium, HAPTICS 2022 - Virtual, Online, United States
    Duration: 21 Mar 202224 Mar 2022

    Publication series

    NameIEEE Haptics Symposium, HAPTICS
    ISSN (Print)2324-7347
    ISSN (Electronic)2324-7355


    Conference27th IEEE Haptics Symposium, HAPTICS 2022
    Country/TerritoryUnited States
    CityVirtual, Online


    Dive into the research topics of 'DeepXPalm: Tilt and Position Rendering using Palm-worn Haptic Display and CNN-based Tactile Pattern Recognition'. Together they form a unique fingerprint.

    Cite this