Cross-lingual evidence improves monolingual fake news detection

Daryna Dementieva, Alexander Panchenko

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

1 Citation (Scopus)

Abstract

Misleading information spreads on the Internet at an incredible speed, which can lead to irreparable consequences in some cases. Therefore, it is becoming essential to develop fake news detection technologies. While substantial work has been done in this direction, one of the limitations of the current approaches is that these models are focused only on one language and do not use multilingual information. In this work, we propose a new technique based on cross-lingual evidence (CE) that can be used for fake news detection and improve existing approaches. The hypothesis of the usage of cross-lingual evidence as a feature for fake news detection is confirmed, firstly, by manual experiment based on a set of known true and fake news. Besides, we compared our fake news classification system based on the proposed feature with several strong baselines on two multi-domain datasets of general-topic news and one newly fake COVID-19 news dataset showing that combining cross-lingual evidence with strong baselines such as RoBERTa yields significant improvements in fake news detection.

Original languageEnglish
Title of host publicationACL-IJCNLP 2021 - 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing, Proceedings of the Student Research Workshop
PublisherAssociation for Computational Linguistics (ACL)
Pages310-320
Number of pages11
ISBN (Electronic)9781954085558
Publication statusPublished - 2021
Event2021 Student Research Workshop, SRW 2021 at the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing, ACL-IJCNLP 2021 - Virtual, Online
Duration: 5 Aug 20216 Aug 2021

Publication series

NameACL-IJCNLP 2021 - 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing, Proceedings of the Student Research Workshop

Conference

Conference2021 Student Research Workshop, SRW 2021 at the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing, ACL-IJCNLP 2021
CityVirtual, Online
Period5/08/216/08/21

Fingerprint

Dive into the research topics of 'Cross-lingual evidence improves monolingual fake news detection'. Together they form a unique fingerprint.

Cite this