Compressed carbon nanotubes: A family of new multifunctional carbon allotropes

Meng Hu, Zhisheng Zhao, Fei Tian, Artem R. Oganov, Qianqian Wang, Mei Xiong, Changzeng Fan, Bin Wen, Julong He, Dongli Yu, Hui Tian Wang, Bo Xu, Yongjun Tian

Research output: Contribution to journalArticlepeer-review

85 Citations (Scopus)


The exploration of novel functional carbon polymorphs is an enduring topic of scientific investigations. In this paper, we present simulations demonstrating metastable carbon phases as the result of pressure induced carbon nanotube polymerization. The configuration, bonding, electronic, and mechanical characteristics of carbon polymers strongly depend on the imposed hydrostatic/non-hydrostatic pressure, as well as on the geometry of the raw carbon nanotubes including diameter, chirality, stacking manner, and wall number. Especially, transition processes under hydrostatic/non-hydrostatic pressure are investigated, revealing unexpectedly low transition barriers and demonstrating sp2→sp3 bonding changes as well as peculiar oscillations of electronic property (e.g., semiconducting→metallic→semiconducting transitions). These polymerized nanotubes show versatile and superior physical properties, such as superhardness, high tensile strength and ductility, and tunable electronic properties (semiconducting or metallic).

Original languageEnglish
Article number1331
JournalScientific Reports
Publication statusPublished - 25 Feb 2013
Externally publishedYes


Dive into the research topics of 'Compressed carbon nanotubes: A family of new multifunctional carbon allotropes'. Together they form a unique fingerprint.

Cite this