Common spatial patterns for steady-state somatosensory evoked potentials

Yunjun Nam, Andrzej Cichocki, Seungjin Choi

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

15 Citations (Scopus)

Abstract

Steady-state somatosensory evoked potential (SSSEP) is a recently developing brain-computer interface (BCI) paradigm where the brain response to tactile stimulation of a specific frequency is used. Thus far, spatial information was not examined in depth in SSSEP BCI, because frequency information was regarded as the main concern of SSSEP analysis. However, given that the somatosensory cortex areas, each of which correspond to a different body part, are well clustered, we can assume that the spatial information could be beneficial for SSSEP analysis. Based on this assumption, we apply the common spatial pattern (CSP) method, which is the spatial feature extraction method most widely used for the motor imagery BCI paradigm, to SSSEP BCI. Experimental results show that our approach, where two CSP methods are applied to the signal of each frequency band, has a performance improvement from 70% to 75%.

Original languageEnglish
Title of host publication2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2013
Pages2255-2258
Number of pages4
DOIs
Publication statusPublished - 2013
Externally publishedYes
Event2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2013 - Osaka, Japan
Duration: 3 Jul 20137 Jul 2013

Publication series

NameProceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS
ISSN (Print)1557-170X

Conference

Conference2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2013
Country/TerritoryJapan
CityOsaka
Period3/07/137/07/13

Fingerprint

Dive into the research topics of 'Common spatial patterns for steady-state somatosensory evoked potentials'. Together they form a unique fingerprint.

Cite this