Charge transfer in cold Yb++Rb collisions

Elvira R. Sayfutyarova, Alexei A. Buchachenko, Svetlana A. Yakovleva, Andrey K. Belyaev

Research output: Contribution to journalArticlepeer-review

30 Citations (Scopus)

Abstract

Charge-transfer cold Yb++ Rb collision dynamics is investigated theoretically using high-level ab initio potential energy curves, dipole moment functions, and nonadiabatic coupling matrix elements. Within the scalar-relativistic approximation, the radiative transitions from the entrance A1Σ+ to the ground X1Σ+ state are found to be the only efficient charge-transfer pathway. The spin-orbit coupling does not open other efficient pathways, but alters the potential energy curves and the transition dipole moment for the A-X pair of states. The radiative, as well as the nonradiative, charge-transfer cross sections calculated within the 10 -3-10 cm-1 collision energy range exhibit all features of the Langevin ion-atom collision regime, including a rich structure associated with centrifugal barrier tunneling (orbiting) resonances. Theoretical rate coefficients for two Yb isotopes agree well with those measured by immersing Yb+ ions in an ultracold Rb ensemble in a hybrid trap. Possible origins of discrepancy in the product distributions and relations to previously studied similar processes are discussed.

Original languageEnglish
Article number052717
JournalPhysical Review A - Atomic, Molecular, and Optical Physics
Volume87
Issue number5
DOIs
Publication statusPublished - 29 May 2013
Externally publishedYes

Fingerprint

Dive into the research topics of 'Charge transfer in cold Yb++Rb collisions'. Together they form a unique fingerprint.

Cite this