Bootstrap tuning in Gaussian ordered model selection 1

Vladimir Spokoiny, Niklas Willrich

Research output: Contribution to journalArticlepeer-review

1 Citation (Scopus)


The paper focuses on the problem of model selection in linear Gaussian regression with unknown possibly inhomogeneous noise. For a given family of linear estimators {θ m , m ∈ M}, ordered by their variance, we offer a new “smallest accepted” approach motivated by Lepski’s device and the multiple testing idea. The procedure selects the smallest model which satisfies the acceptance rule based on comparison with all larger models. The method is completely data-driven and does not use any prior information about the variance structure of the noise: its parameters are adjusted to the underlying possibly heterogeneous noise by the so-called “propagation condition” using a wild bootstrap method. The validity of the bootstrap calibration is proved for finite samples with an explicit error bound. We provide a comprehensive theoretical study of the method, describe in details the set of possible values of the selected model m ∈ M and establish some oracle error bounds for the corresponding estimator θ = θ m .

Original languageEnglish
Pages (from-to)1351-1380
Number of pages30
JournalAnnals of Statistics
Issue number3
Publication statusPublished - Jan 2019
Externally publishedYes


  • Oracle
  • Propagation condition
  • Smallest accepted


Dive into the research topics of 'Bootstrap tuning in Gaussian ordered model selection 1'. Together they form a unique fingerprint.

Cite this