TY - JOUR

T1 - Belief propagation and loop series on planar graphs

AU - Chertkov, Michael

AU - Chernyak, Vladimir Y.

AU - Teodorescu, Razvan

PY - 2008/5/1

Y1 - 2008/5/1

N2 - We discuss a generic model of Bayesian inference with binary variables defined on edges of a planar graph. The Loop Calculus approach of Chertkov and Chernyak (2006 Phys. Rev. E 73 065102(R) [cond-mat/0601487]; 2006 J. Stat. Mech. P06009 [cond-mat/0603189]) is used to evaluate the resulting series expansion for the partition function. We show that, for planar graphs, truncating the series at single-connected loops reduces, via a map reminiscent of the Fisher transformation (Fisher 1961 Phys. Rev. 124 1664), to evaluating the partition function of the dimer-matching model on an auxiliary planar graph. Thus, the truncated series can be easily re-summed, using the Pfaffian formula of Kasteleyn (1961 Physics 27 1209). This allows us to identify a big class of computationally tractable planar models reducible to a dimer model via the Belief Propagation (gauge) transformation. The Pfaffian representation can also be extended to the full Loop Series, in which case the expansion becomes a sum of Pfaffian contributions, each associated with dimer matchings on an extension to a subgraph of the original graph. Algorithmic consequences of the Pfaffian representation, as well as relations to quantum and non-planar models, are discussed.

AB - We discuss a generic model of Bayesian inference with binary variables defined on edges of a planar graph. The Loop Calculus approach of Chertkov and Chernyak (2006 Phys. Rev. E 73 065102(R) [cond-mat/0601487]; 2006 J. Stat. Mech. P06009 [cond-mat/0603189]) is used to evaluate the resulting series expansion for the partition function. We show that, for planar graphs, truncating the series at single-connected loops reduces, via a map reminiscent of the Fisher transformation (Fisher 1961 Phys. Rev. 124 1664), to evaluating the partition function of the dimer-matching model on an auxiliary planar graph. Thus, the truncated series can be easily re-summed, using the Pfaffian formula of Kasteleyn (1961 Physics 27 1209). This allows us to identify a big class of computationally tractable planar models reducible to a dimer model via the Belief Propagation (gauge) transformation. The Pfaffian representation can also be extended to the full Loop Series, in which case the expansion becomes a sum of Pfaffian contributions, each associated with dimer matchings on an extension to a subgraph of the original graph. Algorithmic consequences of the Pfaffian representation, as well as relations to quantum and non-planar models, are discussed.

KW - Analysis of algorithms

KW - Error correcting codes

KW - Heuristics

UR - http://www.scopus.com/inward/record.url?scp=44949154354&partnerID=8YFLogxK

U2 - 10.1088/1742-5468/2008/05/P05003

DO - 10.1088/1742-5468/2008/05/P05003

M3 - Article

AN - SCOPUS:44949154354

VL - 2008

JO - Journal of Statistical Mechanics: Theory and Experiment

JF - Journal of Statistical Mechanics: Theory and Experiment

SN - 1742-5468

IS - 5

M1 - P05003

ER -