Ballistic correction to the density of states in an interacting three-dimensional metal

Daniil S. Antonenko, Mikhail A. Skvortsov

    Research output: Contribution to journalArticlepeer-review

    1 Citation (Scopus)


    We study the tunneling density of states (DOS) in an interacting disordered three-dimensional metal and calculate its energy dependence in the quasiballistic regime, for the deviation from the Fermi energy E-EF, exceeding the elastic scattering rate. In this region, the DOS correction originates from the interplay of the interaction and single-impurity scattering. Depending on the distance between the interaction point and the impurity, one should distinguish (i) the smallest scales of the order of the Fermi wavelength and (ii) larger spatial scales of the order of -vF/|E-EF|, where vF is the Fermi velocity. In two dimensions, the large-scale contribution prevails, resulting in a nearly universal DOS correction. The peculiarity of Friedel oscillations in three dimensions is that the contributions from small and large scales are typically comparable, making the DOS correction sensitive to the details of the interaction and demonstrating a significant particle-hole asymmetry. On the other hand, we show that the nonanalytic part of the DOS is determined by large scales and can be expressed in terms of the Fermi-surface characteristics only.

    Original languageEnglish
    Article number064204
    JournalPhysical Review B
    Issue number6
    Publication statusPublished - 12 Feb 2020


    Dive into the research topics of 'Ballistic correction to the density of states in an interacting three-dimensional metal'. Together they form a unique fingerprint.

    Cite this