Average SWCNT bundle length estimated by resistance measurement

D. M. Mitin, A. A. Vorobyev, Y. S. Berdnikov, A. M. Mozharov, A. G. Nasibulin, I. S. Mukhin

Research output: Contribution to journalConference articlepeer-review


The length of single-walled carbon nanotubes (SWCNTs) affects the optoelectronic and mechanical properties of macroscopic SWCNT layers. Modern methods are capable to measure the length of short nanotubes, and also require complex sample preparation procedures. In this work we show that the average length of SWCNTs can be estimated by measuring the resistance of randomly oriented SWCNTs array. We observe the change in the slope of the resistance dependence on the distance between the contacts with the interval between 100 and 200 µm. The change of resistance slope indicates a change in the path of current flow through the SWCNT. The change in the conduction path can be associated with the "effective bundle length", which should be related to the average nanotube length. Thus, we have demonstrated a simple and quick technique to measure SWCNT bundle length, which can be used in-situ and does not require special sample preparation.

Original languageEnglish
Article number012131
JournalJournal of Physics: Conference Series
Issue number1
Publication statusPublished - 14 Dec 2021
EventInternational Conference PhysicA.SPb/2021 - Saint Petersburg, Russian Federation
Duration: 18 Oct 202122 Oct 2021


Dive into the research topics of 'Average SWCNT bundle length estimated by resistance measurement'. Together they form a unique fingerprint.

Cite this