Autonomous navigation in dynamic social environments using multi-policy decision making

Dhanvin Mehta, Gonzalo Ferrer, Edwin Olson

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

40 Citations (Scopus)

Abstract

In dynamic environments crowded with people, robot motion planning becomes difficult due to the complex and tightly-coupled interactions between agents. Trajectory planning methods, supported by models of typical human behavior and personal space, often produce reasonable behavior. However, they do not account for the future closedloop interactions of other agents with the trajectory being constructed. As a consequence, the trajectories are unable to anticipate cooperative interactions (such as a human yielding), or adverse interactions (such as the robot blocking the way). In this paper, we propose a new method for navigation amongst pedestrians in which the trajectory of the robot is not explicitly planned, but instead, a planning process selects one of a set of closed-loop behaviors whose utility can be predicted through forward simulation. In particular, we extend Multi-Policy Decision Making (MPDM) [1] to this domain using the closed-loop behaviors Go-Solo, Follow-other, and Stop. By dynamically switching between these policies, we show that we can improve the performance of the robot as measured by utility functions that reward task completion and penalize inconvenience to other agents. Our evaluation includes extensive results in simulation and real-world experiments.

Original languageEnglish
Title of host publicationIROS 2016 - 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages1190-1197
Number of pages8
ISBN (Electronic)9781509037629
DOIs
Publication statusPublished - 28 Nov 2016
Externally publishedYes
Event2016 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2016 - Daejeon, Korea, Republic of
Duration: 9 Oct 201614 Oct 2016

Publication series

NameIEEE International Conference on Intelligent Robots and Systems
Volume2016-November
ISSN (Print)2153-0858
ISSN (Electronic)2153-0866

Conference

Conference2016 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2016
Country/TerritoryKorea, Republic of
CityDaejeon
Period9/10/1614/10/16

Fingerprint

Dive into the research topics of 'Autonomous navigation in dynamic social environments using multi-policy decision making'. Together they form a unique fingerprint.

Cite this