Asynchronous Behavior Trees with Memory aimed at Aerial Vehicles with Redundancy in Flight Controller

Evgenii Safronov, Michael Vilzmann, Dzmitry Tsetserukou, Konstantin Kondak

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

8 Citations (Scopus)

Abstract

Complex aircraft systems are becoming a target for automation. For successful operation, they require both efficient and readable mission execution system (MES). Flight control computer (FCC) units, as well as all important subsystems, are often duplicated. Discrete nature of MES does not allow small differences in data flow among redundant FCCs which are acceptable for continuous control algorithms. Therefore, mission state consistency has to be specifically maintained. We present a novel MES which includes FCC state synchronization. To achieve this result we developed the new concept of Asynchronous Behavior Tree with Memory (ABTM) and proposed a state synchronization algorithm. The implemented system was tested and proven to work in a real-time simulation of High Altitude Pseudo Satellite (HAPS) mission.

Original languageEnglish
Title of host publication2019 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2019
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages3113-3118
Number of pages6
ISBN (Electronic)9781728140049
DOIs
Publication statusPublished - Nov 2019
Externally publishedYes
Event2019 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2019 - Macau, China
Duration: 3 Nov 20198 Nov 2019

Publication series

NameIEEE International Conference on Intelligent Robots and Systems
ISSN (Print)2153-0858
ISSN (Electronic)2153-0866

Conference

Conference2019 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2019
Country/TerritoryChina
CityMacau
Period3/11/198/11/19

Fingerprint

Dive into the research topics of 'Asynchronous Behavior Trees with Memory aimed at Aerial Vehicles with Redundancy in Flight Controller'. Together they form a unique fingerprint.

Cite this