An RBF network method for blind signal separation

Ying Tan, Jun Wang

Research output: Contribution to conferencePaperpeer-review


A radial basis function (RBF) based approach for blind signal separation in nonlinear mixture is proposed in this paper. A cost function, which consists of the mutual information and partial moments of the outputs of the separation system, is defined to extract the independent signals from their nonlinear mixtures. The minimization of the cost function results in the independence of the outputs with desirable moments such that the original sources are separated properly. A learning algorithm for the parametric RBF network is established by using the stochastic gradient descent method. This approach is characterized by high learning convergence rate of weights, modular structure, as well as feasible hardware implementation. Simulation result demonstrates the feasibility, and validity of the proposed approach.

Original languageEnglish
Number of pages4
Publication statusPublished - 2002
Externally publishedYes
Event2002 International Joint Conference on Neural Networks (IJCNN '02) - Honolulu, HI, United States
Duration: 12 May 200217 May 2002


Conference2002 International Joint Conference on Neural Networks (IJCNN '02)
Country/TerritoryUnited States
CityHonolulu, HI


Dive into the research topics of 'An RBF network method for blind signal separation'. Together they form a unique fingerprint.

Cite this