A statistical model of aggregate fragmentation

F. Spahn, E. Vieira Neto, A. H.F. Guimarães, A. N. Gorban, N. V. Brilliantov

Research output: Contribution to journalArticlepeer-review

13 Citations (Scopus)

Abstract

A statistical model of fragmentation of aggregates is proposed, based on the stochastic propagation of cracks through the body. The propagation rules are formulated on a lattice and mimic two important features of the process - a crack moves against the stress gradient while dissipating energy during its growth. We perform numerical simulations of the model for two-dimensional lattice and reveal that the mass distribution for small- and intermediate-size fragments obeys a power law, F(m)∝m-3/2, in agreement with experimental observations. We develop an analytical theory which explains the detected power law and demonstrate that the overall fragment mass distribution in our model agrees qualitatively with that one observed in experiments.

Original languageEnglish
Article number013031
JournalNew Journal of Physics
Volume16
DOIs
Publication statusPublished - Jan 2014
Externally publishedYes

Fingerprint

Dive into the research topics of 'A statistical model of aggregate fragmentation'. Together they form a unique fingerprint.

Cite this